Human postmeiotic segregation 2 exhibits biased repair at tetranucleotide microsatellite sequences.
نویسندگان
چکیده
The mismatch repair (MMR) system plays a major role in removing DNA polymerization errors, and loss of this pathway results in hereditary cancers characterized by microsatellite instability. We investigated microsatellite stability during DNA replication within human postmeiotic segregation 2 (hPMS2)-deficient and proficient human lymphoblastoid cell lines. Using a shuttle vector assay, we measured mutation rates at reporter cassettes containing defined mononucleotide, dinucleotide, and tetranucleotide microsatellite sequences. A mutator phenotype was observed in the hPMS2-deficient cell line. The mutation rate of vectors containing [G/C](10) or [GT/CA](10) alleles was elevated 20-fold to 40-fold in hPMS2-deficient cells, relative to an hPMS2-expressing cell line. We observed a 6-fold and 12-fold relative increase in mutation rate of [TTTC/AAAG](9) and [TTCC/AAGG](9) sequences, respectively, in hPMS2-deficient cells. Mutational specificity analyses suggested that repair by hPMS2 is biased. In the absence of hPMS2, a greater number of microsatellite expansion versus deletion mutations was observed, and expansion rates of the tetranucleotide alleles were similar. In the presence of hPMS2, we observed a 29-fold decrease in the [TTCC/AAGG](9) expansion rate but only a 6-fold decrease for the [TTTC/AAAG](9) allele. Our data indicate that hPMS2 is more protective of tetranucleotide expansions than deletions and that hPMS2 displays a sequence bias, wherein [TTCC/AAGG] sequences are stabilized to a greater extent than [TTTC/AAAG]. Our results allow for greater accuracy during identification of MMR defects by providing a mutational signature characteristic of hPMS2 defect. This study also provides clues to possible mechanisms of repair by hPMS2 in the context of the MMR system.
منابع مشابه
(CA/TG) microsatellite sequences escape the inhibition of recombination by mismatch repair in Saccharomyces cerevisiae.
Sequence divergence reduces the frequency of recombination, a process that is dependent on the activity of the mismatch repair system. In the yeast Saccharomyces cerevisiae, repair of mismatches results in gene conversion or restoration, whereas failure to repair mismatches results in postmeiotic segregation (PMS). By examining the conversion and PMS in yeast strains deficient in various MMR ge...
متن کاملMicrosatellite instability in gynecological sarcomas and in hMSH2 mutant uterine sarcoma cell lines defective in mismatch repair activity.
We have examined a panel of gynecological sarcomas for microsatellite instability. The genomic DNA from 11 of 44 sarcomas contained somatic alterations in the lengths of one or more di-, tri-, tetra-, or pentanucleotide microsatellite sequence markers, and 6 of these cases had alterations in two or more markers. In addition, di-, tri-, and tetranucleotide microsatellites were found to be highly...
متن کاملMutational analyses of dinucleotide and tetranucleotide microsatellites in Escherichia coli: influence of sequence on expansion mutagenesis.
Mutagenesis at [GT/CA](10), [TC/AG](11) and [TTCC/AAGG](9) microsatellite sequences inserted in the herpes simplex virus thymidine kinase (HSV-tk) gene was analyzed in isogenic mutL(+) and mutL(-) Escherichia coli. In both strains, significantly more expansion than deletion mutations were observed at the [TTCC/AAGG](9) motif relative to either dinucleotide motif. As the HSV-tk coding sequence c...
متن کاملMicrosatellite instability at a tetranucleotide repeat in type I endometrial carcinoma
BACKGROUND Microsatellite instability (MSI) at tri- or tetranucleotide repeat markers (elevated microsatellite alterations at selected tetranucleotide repeat, EMAST) has been recently described. But, the underlying genetic mechanism of EMAST is unclear. This study was to investigate the prevalence of EMAST, in type I endometrial carcinoma, and to determine the correlation between the MSI status...
متن کاملUbiquitous somatic alterations at microsatellite alleles occur infrequently in Barrett's-associated esophageal adenocarcinoma.
Microsatellite alterations have been documented in a subset of sporadic tumors, including those of the colon, lung, bladder, stomach, and esophagus. This study documented the frequency of microsatellite alterations at 139 loci, comprising predominantly dinucleotide and tetranucleotide repeat units, in 17 cases of primary esophageal adenocarcinoma arising against a background of Barrett's metapl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 69 3 شماره
صفحات -
تاریخ انتشار 2009